A Unified Multiscale Framework for Discrete Energy Minimization
نویسندگان
چکیده
Discrete energy minimization is a ubiquitous task in computer vision, yet is NP-hard in most cases. In this work we propose a multiscale framework for coping with the NP-hardness of discrete optimization. Our approach utilizes algebraic multiscale principles to efficiently explore the discrete solution space, yielding improved results on challenging, non-submodular energies for which current methods provide unsatisfactory approximations. In contrast to popular multiscale methods in computer vision, that builds an image pyramid, our framework acts directly on the energy to construct an energy pyramid. Deriving a multiscale scheme from the energy itself makes our framework application independent and widely applicable. Our framework gives rise to two complementary energy coarsening strategies: one in which coarser scales involve fewer variables, and a more revolutionary one in which the coarser scales involve fewer discrete labels. We empirically evaluated our unified framework on a variety of both non-submodular and submodular energies, including energies from Middlebury benchmark.
منابع مشابه
Fast global stereo matching via energy pyramid minimization
We define a global matching framework based on energy pyramid, the Global Matching via Energy Pyramid (GM-EP) algorithm, which estimates the disparity map from a single stereo-pair by solving an energy minimization problem. We efficiently address this minimization by globally optimizing a coarse to fine sequence of sparse Conditional Random Fields (CRF) directly defined on the energy. This glob...
متن کاملCombinatorial Pyramids and Discrete Geometry for Energy-Minimizing Segmentation
This paper defines the basis of a new hierarchical framework for segmentation algorithms based on energy minimization schemes. This new framework is based on two formal tools. First, a combinatorial pyramid encode efficiently a hierarchy of partitions. Secondly, discrete geometric estimators measure precisely some important geometric parameters of the regions. These measures combined with photo...
متن کاملA Multiscale Framework for Challenging Discrete Optimization
Current state-of-the-art discrete optimization methods struggle behind when it comes to challenging contrast-enhancing discrete energies (i.e., favoring different labels for neighboring variables). This work suggests a multiscale approach for these challenging problems. Deriving an algebraic representation allows us to coarsen any pair-wise energy using any interpolation in a principled algebra...
متن کاملA Multiscale Model for Virus Capsid Dynamics
Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose...
متن کاملDual Bases and Discrete Reproducing Kernels: A Unified Framework for RBF and MLS Approximation
Moving least squares (MLS) and radial basis function (RBF) methods play a central role in multivariate approximation theory. In this paper we provide a unified framework for both RBF and MLS approximation. This framework turns out to be a linearly constrained quadratic minimization problem. We show that RBF approximation can be considered as a special case of MLS approximation. This sheds new l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1204.4867 شماره
صفحات -
تاریخ انتشار 2012